A region of tapasin that affects L(d) binding and assembly.
نویسندگان
چکیده
Tapasin has been shown to stabilize TAP and to link TAP to the MHC class I H chain. Evidence also has been presented that tapasin influences the loading of peptides onto MHC class I. To explore the relationship between the ability of tapasin to bind to TAP and the MHC class I H chain and the ability of tapasin to facilitate class I assembly, we have created novel tapasin mutants and expressed them in 721.220-L(d) cells. One mutant has a deletion of nine amino acid residues (tapasin Delta334-342), and the other has amino acid substitutions at positions 334 and 335. In this report we describe the ability of these mutants to interact with L(d) and their effects on L(d) surface expression. We found that tapasin Delta334-342 was unable to bind to the L(d) H chain, and yet it facilitated L(d) assembly and expression. Tapasin Delta334-342 was able to bind and stabilize TAP, suggesting that TAP stabilization may be important to the assembly of L(d). Tapasin mutant H334F/H335Y, unlike tapasin Delta334-342, bound to L(d). Expression of tapasin H334F/H335Y in 721.220-L(d) reduced the proportion of cell surface open forms of L(d) and retarded the migration of L(d) from the endoplasmic reticulum. In total, our results indicate that the 334-342 region of tapasin influences L(d) assembly and transport.
منابع مشابه
A charged amino acid residue in the transmembrane/cytoplasmic region of tapasin influences MHC class I assembly and maturation.
Tapasin influences the quantity and quality of MHC/peptide complexes at the cell surface; however, little is understood about the structural features that underlie its effects. Because tapasin, MHC class I, and TAP are transmembrane proteins, the tapasin transmembrane/cytoplasmic region has the potential to affect interactions at the endoplasmic reticulum membrane. In this study, we have assess...
متن کاملMechanisms of function of tapasin, a critical major histocompatibility complex class I assembly factor.
For their efficient assembly in the endoplasmic reticulum (ER), major histocompatibility complex (MHC) class I molecules require the specific assembly factors transporter associated with antigen processing (TAP) and tapasin, as well as generic ER folding factors, including the oxidoreductases ERp57 and protein disulfide isomerase (PDI), and the chaperone calreticulin. TAP transports peptides fr...
متن کاملTapasin increases efficiency of MHC I assembly in the endoplasmic reticulum but does not affect MHC I stability at the cell surface.
Cell surface expression of MHC I molecules depends on the chaperone tapasin; how tapasin functions is not fully understood. We created three fluorescent tapasin constructs: wild-type tapasin, soluble tapasin, which does not interact with TAP, and N300 tapasin, which does not interact with MHC I. In contrast to earlier reports, all three constructs localize to the endoplasmic reticulum (ER), tho...
متن کاملDistinct assembly profiles of HLA-B molecules.
MHC class I polymorphisms are known to influence outcomes in a number of infectious diseases, cancers, and inflammatory diseases. Human MHC class I H chains are encoded by the HLA-A, HLA-B, and HLA-C genes. These genes are highly polymorphic, with the HLA-B locus being the most variable. Each HLA class I protein binds to a distinct set of peptide Ags, which are presented to CD8(+) T cells. HLA-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of immunology
دوره 167 8 شماره
صفحات -
تاریخ انتشار 2001